Search results

Search for "porous electrode" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • friendliness, low operating temperature, and high adaptability of specific characteristics [1][2][3]. The key components of PEMFC membrane–electrode assemblies (MEA) are the proton-exchange polymer membrane and porous electrode layers, in which current-forming reactions of oxygen electroreduction (ORR) and
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • ; porous electrode; redox flow battery; soft-templating approach; vanadium; Introduction In recent years, vanadium redox flow batteries (VRFBs) have attracted significant attention as a promising large-scale system for storing excess energy from renewable sources like wind or solar energy [1][2][3]. The
PDF
Album
Full Research Paper
Published 28 May 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • electrode stands in stark contrast to the planar Ru/C electrode (Figure 9b). Firstly, the current density J (defined with respect to the experimentally accessible macroscopic sample area) starts out 6 times lower in the planar case than for the porous electrode. Secondly, the loss of catalytic turnover of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • ; ZnO; Introduction Dye-sensitized solar cells (DSSCs) using inorganic semiconductors are being investigated as a cost-effective and alternative energy source. In DSSCs, a porous electrode made of a wide band gap semiconductor is required for anchoring dye molecules and transporting photo-injected
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved
  • simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in
  • special cases the averaged thermal behavior can be captured very well by porous electrode theory. Keywords: lithium ion batteries; multiscale modeling; heat transport; Introduction The main challenge for establishing an ab initio multiscale simulation approach for batteries or electrochemical storage
PDF
Album
Full Research Paper
Published 20 Apr 2015

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • has been found that porous electrode materials can facilitate the diffusion of Li ions to active sites with less resistance and can also withstand the change of volume during the charge/discharge cycling [23]. Thus, the micro- and mesopores of [Fe3O4–C] could act as buffer for the volume change during
PDF
Album
Supp Info
Letter
Published 30 Oct 2013
Other Beilstein-Institut Open Science Activities